NETZTSTABILITÄT ALS HERAUSFORDERUNG IN DER ENERGIEWENDE

Dr.-Ing. Georg Pangalos

Leistungselektronik für Regenerative Energiesysteme

KOMPETENZEN

SPANNUNGSQUALITÄT

IN NETZEN MIT ERNEUERBAREN ENERGIEQUELLEN

Erneuerbare Energieträger:

- Verteilt, nicht planbar und nicht jederzeit verfügbar.
- Leistungselektronische Systeme werden zur Anbindung an das

[pixabay.com, CC0]

Spannungsqualität:

- Ungleichgewicht von Erzeugung und Verbrauch führt zu Frequenzschwankungen.
- **Oberwellen** werden ins Stromnetz eingespeist.

[Liang, 2016]

TEIL I: FREQUENZSTABILITÄT

Was passiert bei einem **Kraftwerksausfall?**

- Momentanreserve bremst den Abfall der Frequenz
- Primärregelleistung bringt die Frequenz auf eine gleichbleibende Abweichung
- Sekundärregelleistung bringt die Frequenz zurück auf ihren Sollwert
- Momentanreserve wird aktuell vorwiegend durch Schwungmasse thermischer Kraftwerke bereitgestellt
- Je mehr Erneuerbare, desto größer die Netzfrequenzänderungen

DRINGLICHKEIT DER BEREITSTELLUNG VON MOMENTANRESERVE

Wo und wann wird es benötigt?

- In Regionen mit hohem Anteil an Erneuerbaren (VRE %) und geringer Kuppelkapazität (IC %)
- Bereitstellung von Momentanreserve durch andere Technologien ist erforderlich
- Andere Länder haben bereits angefangen

BEDARF AN MOMENTANRESERVE IN HH & SH 2030

Wie entwickelt sich die Modellregion?

- Abschaltung von 9 Großkraftwerken
- 2 GW weniger Nennleistung
- >30% weniger Energie in rotierenden Massen
- >30% geringere Anlaufzeitkonstante
- 25% erhöhte Frequenzabweichungen

SWING-EQUATION-REGELUNG

Wie schließen wir die Lücke?

$$\Delta P = P_{\text{gen}} - P_{\text{load}} = 2H f \frac{P_{\text{nom}}}{f_{\text{nom}}^2} \frac{\mathrm{d}f}{\mathrm{d}t}$$

- Mit der Swing-Equation-Regelung ist die Bereitstellung von Momentanreserve mit Batteriespeichersystemen möglich.
- Das Batteriespeichersystem emuliert rotierende Massen

OPTIMIERTE SWING-EQUATION-REGELUNG

Wie können die Parameter optimiert werden?

- Gleiche statische Frequenzabweichung bei deutlich geringerer Nennleistung
- Höhere Frequenzänderung (RoCoF)

Kriterium	SEC	OSEC	Verhältni s
Aktive Leistung	50 MW	18 MW	37%
Energie	30 kWh	30 kWh	100%

ANFORDERUNGEN AN DIE LEISTUNGSELEKTRONIK

Was wird benötigt?

- Zurzeit gibt es keine Standardprodukte, existierende Produkte hängen von den lokalen Netzsituationen und Märkten ab
- Das Nachbilden der bestehenden rotierenden Masse ist nicht zwangsläufig der beste Weg
- Swing-Equation-Regelung: einfach zu implementieren, Frequenzmessung wird benötigt
- Virtuelle Synchronmaschine: Komplexe Modellierung, keine Frequenzmessung nötig

Anforderungen	von	bis
Reaktionszeit	~	0,1 s
Erbringungsdauer	15 s	1 min
Nennleistung	500 kW	~

FREQUENZSCHÄTZUNG

Wie schnell muss die Frequenz geschätzt werden?

Momentanreserve mit einem
Batteriespeicher bereitstellen in 100 ms

Teil II: OBERWELLENKOMPENSATION

HARMONISCHE SHAPE CLASS

 $x(t) = \sin t$ $\dot{x}(t) = \cos t$ $\ddot{x}(t) = -\sin t$

Differentialgleichun $\mathbf{x}(t) + x(t) = 0$

Diskretisierung

$$0 = \underbrace{(1 \quad t_s^2 \omega^2 - 2 \quad 1)}_{x(k)} \begin{pmatrix} x(k-1) \\ x(k) \\ x(k+1) \end{pmatrix}$$

SHAPE CLASS PRÄDIKTIVE REGELUNG

[Cateriano Yáñez et. al 2018]

VERGLEICHSSTUDIE

VERGLEICHSSTUDIE

Load Scenarios	$THD(v_f)$		$THD(i_f)$	
	IRP	MPC	IRP	MPC
100Ω	1.07%	0.01%	2.92%	0.18%
9Ω	0.75%	0.02%	2.72%	0.11%
2Ω	0.85%	0.07%	2.56%	0.05%

[Weihe et. al 2018]

17 © Fraunhofer ISIT September 2019

HARDWARE IN THE LOOP

ZUSAMMENFASSUNG

- Anteil an rotierenden Massen sinkt in zukünftigen Stromnetzen
- Momentanreserve kann mit Batteriespeichersystemen emuliert werden
- Eine Optimierung bezüglich bestimmter Kriterien ist möglich
- Modellprädiktive Regelung kann zur Oberwellenkompesation eingesetzt werden
- MPC adaptiert sich auf unterschiedliche Lastszenarien
- Aktuel wird eine HIL-Simulationsumgebung entwickelt

Vielen Dank für Ihre Aufmerksamkeit! Thank you for your attention

